- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dauwalder, Brigitte (1)
-
Doe, Chris Q. (1)
-
Lama, Chamala (1)
-
Lama, Jyoti (1)
-
Le, Hoa Nhu (1)
-
Love, Cameron R. (1)
-
Munroe, Jordan A. (1)
-
Reeve, Joseph L. (1)
-
Syed, Mubarak H. (1)
-
Waqar, Marium (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
Wang, Hongyan (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wang, Hongyan (Ed.)Stem cells must balance proliferation and quiescence, with excess proliferation favoring tumor formation, and premature quiescence preventing proper organogenesis. Drosophila brain neuroblasts are a model for investigating neural stem cell entry and exit from quiescence. Neuroblasts begin proliferating during embryogenesis, enter quiescence prior to larval hatching, and resume proliferation 12-30h after larval hatching. Here we focus on the mechanism used to exit quiescence, focusing on "type II" neuroblasts. There are 16 type II neuroblasts in the brain, and they undergo the same cycle of embryonic proliferation, quiescence, and proliferation as do most other brain neuroblasts. We focus on type II neuroblasts due to their similar lineage as outer radial glia in primates (both have extended lineages with intermediate neural progenitors), and because of the availability of specific markers for type II neuroblasts and their progeny. Here we characterize the role of Insulin-like growth factor II mRNA-binding protein (Imp) in type II neuroblast proliferation and quiescence. Imp has previously been shown to promote proliferation in type II neuroblasts, in part by acting antagonistically to another RNA-binding protein called Syncrip (Syp). Here we show that reducing Imp levels delays exit from quiescence in type II neuroblasts, acting independently of Syp, with Syp levels remaining low in both quiescent and newly proliferating type II neuroblasts. We conclude that Imp promotes exit from quiescence, a function closely related to its known role in promoting neuroblast proliferation.more » « less
-
Lama, Chamala; Love, Cameron R.; Le, Hoa Nhu; Waqar, Marium; Reeve, Joseph L.; Lama, Jyoti; Dauwalder, Brigitte (, PLOS Genetics)Wang, Hongyan (Ed.)The blood brain barrier (BBB) forms a stringent barrier that protects the brain from components in the circulation that could interfere with neuronal function. At the same time, the BBB enables selective transport of critical nutrients and other chemicals to the brain. Beyond these functions, another recently recognized function is even less characterized, specifically the role of the BBB in modulating behavior by affecting neuronal function in a sex-dependent manner. Notably, signaling in the adult Drosophila BBB is required for normal male courtship behavior. Courtship regulation also relies on male-specific molecules in the BBB. Our previous studies have demonstrated that adult feminization of these cells in males significantly lowered courtship. Here, we conducted microarray analysis of BBB cells isolated from males and females. Findings revealed that these cells contain male- and female-enriched transcripts, respectively. Among these transcripts, nuclear receptor Hr46/Hr3 was identified as a male-enriched BBB transcript. Hr46/Hr3 is best known for its essential roles in the ecdysone response during development and metamorphosis. In this study, we demonstrate that Hr46/Hr3 is specifically required in the BBB cells for courtship behavior in mature males. The protein is localized in the nuclei of sub-perineurial glial cells (SPG), indicating that it might act as a transcriptional regulator. These data provide a catalogue of sexually dimorphic BBB transcripts and demonstrate a physiological adult role for the nuclear receptor Hr46/Hr3 in the regulation of male courtship, a novel function that is independent of its developmental role.more » « less
An official website of the United States government
